
Assignment 1: Double Integrals: Solutions

1. (a) With n = 4 and m = 2, the eight lower-left points are

(0, 0), (1/2, 0), (1, 0), (3/2, 0), (0, 1), (1/2, 1), (1, 1), (3/2, 1)

Since each box has area (1/2)(1) = 1/2, the estimate for the integral is

(1/2)[f(0, 0)+f(1/2, 0)+f(1, 0)+(3/2, 0)+f(0, 1)+f(1/2, 1)+f(1, 1)+f(3/2, 1)]

which reduces to

(1/2)(0 + 0 + 0 + 0 + 0 + 1/4 + 1 + 9/4) = 7/4

(b) (Note: I made a mistake with this question - the curves given ac-
tually bound two different areas. For this solution we’ll look at the
bounded area on the right; both areas are identical. If you did the
integral over both bounded areas, I will not deduct marks).

The curves y = x2−1 and y = 2 intersect at x =
√

3. So we could take
as our bounding rectangle R = [0,

√
3]× [0, 2]. Dividing this rectangle

up with n = 4 and m = 2, the lower left points are

(0, 0), (
√

3/4, 0), (
√

3/2, 0), (3
√

3/4, 0), (0, 1), (
√

3/4, 1), (
√

3/2, 1), (3
√

3/4, 1)

The area of each rectangle is
√

(3)/4. Of the 8 points, the first 5 give
0 when put into the function; the other three points are in the region,
so we get

(
√

3/4)(3/16 + 3/4 + 27/16) = 21
√

3/32

2. (a) ∫ 2

0

∫ 3

0
x− y dx dy

=
∫ 2

0
(x2/2− xy)|30 dy

=
∫ 2

0
(9/2− 3y) dy

= (9y/2− 3y2/2)|20
= 9− 6

= 3
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(b) If we use Fubini’s theorem to switch the order of integration, the
integral is easier to calculate:∫ 1

0

∫ 2

1
yexy dy dx

=
∫ 2

1

∫ 1

0
yexy dx dy (by Fubini’s theorem)

=
∫ 2

1
exy|10 dy

=
∫ 2

1
ey − 1 dy

= (ey − y)|21 dy
= (e2 − 2)− (e− 1)

= e2 − e− 1

(c) ∫ 4

0

∫ √y
y

x3 + 4y dx dy

=
∫ 4

0
(x4/4 + 4xy)|

√
y

y dy

=
∫ 4

0
y2/4 + 4y

√
y − y4/4− 4y2 dy

=
∫ 4

0
−15y2/4 + 4y3/2 − y4/4 dy

= (−5y3/4 + 8y5/2/5− y5/20)|40
= −80 + 256/5− 256/5

= −80

(d) The region D is type 2, with 0 ≤ y ≤ π/2 and −y ≤ x ≤ y. So
the integral is ∫ π/2

0

∫ y

−y
cos y dx dy

=
∫ π/2

0
(x cos y)|y−y dy

=
∫ π/2

0
y cos y − (−y cos y) dy
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=
∫ π/2

0
2y cos y dy

To evaluate this integral, we use integration by parts with u = y
and dv = cos y. Then the integral becomes

= 2

(
y sin y|π/20 −

∫ π/2

0
sin y dy

)
= 2

(
π/2− (− cos y)|π/20

)
= 2 (π/2− 1)

= π − 2

(e) When we change to polar co-ordinates, the region is bounded by
0 ≤ θ ≤ 2π and 0 ≤ r ≤ 2, while 1− x2 becomes 1− r2 cos2 θ. So
the integral is ∫ 2π

0

∫ 2

0
(1− r2 cos2 θ)r dr dθ

=
∫ 2π

0

∫ 2

0
r − r3 cos2 θ dr dθ

=
∫ 2π

0
(r2/2− r4/4) cos2 θ)|20 dθ

=
∫ 2π

0
2− 4 cos2 θ dθ

We now use the identity cos2 θ = 1/2(1 + cos(2θ)) to simplify the
integral:

=
∫ 2π

0
2− 2(1 + cos(2θ)) dθ

=
∫ 2π

0
cos 2θ dθ

= sin(2θ)/2|2π0
= 0

3. The region is type 2, with −π ≤ y ≤ π and sin y ≤ x ≤ ey. So the area
is given by ∫ π

−π

∫ ey

sin y
1 dx dy
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=
∫ π

−π
ey − sin y dy

= (ey + cos y)|π−π
= (eπ − 1)− (e−π − 1)

= eπ − e−π

4. When drawn out, one can see that the curve is a four-leaf clover, with
one leaf enclosed between −π/4 ≤ θ ≤ π/4 (see Example 8 in Section
10.3 of the textbook). Thus, the area of the region is given by the
integral ∫ π/4

−π/4

∫ cos 2θ

0
(1)r dr dθ

=
∫ π/4

−π/4
(r2/2)|cos 2θ

0 dθ

=
∫ π/4

−π/4
1/2(cos2(2θ)) dθ

We now use the identity cos2 θ = 1/2(1 + cos(2θ)) to simplify the inte-
gral:

=
∫ π/4

−π/4
1/4(1 + cos(4θ)) dθ

= 1/4(θ + 1/4 sin(4θ))|π/4−π/4
= 1/4[(π/4 + 0)− (−π/4 + 0)]

= π/8

5. The curves intersect at x = 2 and x = −1. The region is type 1, with
−1 ≤ x ≤ 2 and 2− x ≤ y ≤ 4− x2, so that the volume is given by∫ 2

−1

∫ 4−x2

2−x
x2 + 4 dy dx

=
∫ 2

−1
(x2 + 4)(4− x2 − (2− x)) dx

=
∫ 2

−1
(x2 + 4)(2− x2 + x) dx

=
∫ 2

−1
2x2 + 8− x4 − 4x2 + x3 + 4x dx
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=
∫ 2

−1
8 + 4x− 2x2 + x3 − x4 dx

= (8x+ 2x2 − 2/3x3 + 1/4x4 − 1/5x5)|2−1

= (16 + 8− 16/3 + 4− 32/5)− (−8 + 2 + 2/3 + 1/4 + 1/5)

= 423/20

6. We can consider two parts of the solid seperately: the part above the
xy-plane, and the part below. Since these regions are the same, the
total volume is twice the volume of the part above the xy-plane. For
the part above the xy-plane, the sphere meets the xy-plane with the
equation x2 + y2 = 25. So, in the xy-plane, our region is bounded by
x2 + y2 = 25 and x2 + y2 = 9. If we switch to polar co-ordinates,
these are the curves with r = 5 and r = 3. Re-arranging the equation
x2 + y2 + z2 = 25 gives z =

√
25− x2 − y2 =

√
25− r2. Thus the total

volume is

2
∫ 2π

0

∫ 5

3
(
√

25− r2)r dr dθ

= 2
∫ 2π

0

∫ 5

3
r(25− r2)1/2 dr dθ

= 2
∫ 2π

0
(−1/3(25− r2)3/2)|53 dθ

= 2
∫ 2π

0
(0− (−64)/3) dθ

= 2(64θ/3)|2π0 dθ

= 2(64/3)(2θ)

= 256π/3

7. The region is given by the bounds 0 ≤ x ≤ a and 0 ≤ a − x. To find
the centre of mass, we first need to the total mass. This is given by the
integral ∫

D
k(x2 + y2) dA

= k
∫ a

0

∫ a−x

0
x2 + y2 dy dx

= k
∫ a

0
(x2y + y3/3)|a−x0 dx
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= k
∫ a

0
x2(a− x) + (a− x)3/3 dx

= k
∫ a

0
ax2 − x3 + (a− x)3/3 dx

= k(ax3/3− x4/4− (a− x)4/12)|a0
= k((a4/3− a4/4− 0)− (0− 0− a4/12))

= ka4/6

To find the x co-ordinate of the centre of mass, we evaluate the integral∫ a

0

∫ a−x

a
xk(x2 + y2) dy dx

This is a similar integral to above, it evaluates to ka5/15. Thus the x
co-ordinate is given by

ka5/15

ka4/6
=

2a

5

Since the function and region is symmetric with regards to x and y,
the y co-ordinate is also given by

2a

5

Thus the centre of mass is (
2a

5
,
2a

5

)
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