Assignment 1: Double Integrals: Solutions

1. (a) With n =4 and m = 2, the eight lower-left points are

(0,0),(1/2,0),(1,0),(3/2,0),(0,1),(1/2,1),(1,1),(3/2,1)

Since each box has area (1/2)(1) = 1/2, the estimate for the integral is
(1/2)[£(0,0)+f(1/2,0)+f(1,0)+(3/2,0)+ (0, D+ f(1/2, 1)+ (1, )+ (3/2,1)]

which reduces to

(1/2)(04+0+0+0+0+1/4+1+9/4) =7/4

(b) (Note: I made a mistake with this question - the curves given ac-
tually bound two different areas. For this solution we’ll look at the
bounded area on the right; both areas are identical. If you did the
integral over both bounded areas, I will not deduct marks).

The curves y = 22 — 1 and y = 2 intersect at z = V3. So we could take
as our bounding rectangle R = [0,+/3] x [0,2]. Dividing this rectangle
up with n =4 and m = 2, the lower left points are

(0,0), (v/3/4,0), (v/3/2,0), (3v/3/4,0), (0, 1), (v/3/4,1), (v/3/2,1), (3v/3/4,1)

The area of each rectangle is \ﬂ3)/4. Of the 8 points, the first 5 give
0 when put into the function; the other three points are in the region,
so we get

(V/3/4)(3/16 + 3/4 + 27/16) = 211/3/32
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(b) If we use Fubini’s theorem to switch the order of integration, the
integral is easier to calculate:

1 2
/ / ye® dy dx
0o J1

2 1
= / / ye™ dx dy (by Fubini’s theorem)
1 Jo
2
= / ™o dy
1

2
= /ey—ldy
1

= (¢! —y)lidy
= (@@= = (- 1)
= et—e—1
(c)
vy
//y:c3+4ydxdy
0 Jy

4
— /(x4/4—|—4xy)|;//§dy
0
4
S R R R

4
= / —15y° /A + 4% — o' /A dy
0

= (=5y*/4 + 8y°*/5 — y°/20)|3
— 80+ 256/5 — 256/5
— _80

(d) The region D is type 2, with 0 <y < 7/2 and —y <z < y. So

the integral is
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To evaluate this integral, we use integration by parts with u =y
and dv = cosy. Then the integral becomes
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(e) When we change to polar co-ordinates, the region is bounded by

0<6<2rand0<r <2, while 1 — 22 becomes 1 — r?cos?6. So
the integral is
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We now use the identity cos® 6 = 1/2(1 + cos(26)) to simplify the
integral:
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3. The region is type 2, with —7 <y < 7 and siny < x < eY. So the area

is given by
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4. When drawn out, one can see that the curve is a four-leaf clover, with
one leaf enclosed between —7/4 < 6 < 7/4 (see Example 8 in Section
10.3 of the textbook). Thus, the area of the region is given by the
integral

w/4  pcos20
/ / (1)rdrde
0
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m/4 2 cos 260
= [l ds
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We now use the identity cos?§ = 1/2(1 + cos(26)) to simplify the inte-
gral:

_ /”//44 1/4(1 + cos(46)) df

= 1/4(0 + 1/4sin(49))[""",
= 1/4[(7/4+0) — (~=7/4 +0)]

= 7/8
5. The curves intersect at x = 2 and x = —1. The region is type 1, with
—1<z<2and 2—a <y <4— 22 so that the volume is given by
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2
= / 8 +dx — 222 + 2° — 2t dx
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= (8z +22% —2/32% + 1/42* — 1/52°)|*,
= (16+8—16/3+4—32/5) — (=8 +2+2/3+1/4+1/5)
= 423/20

6. We can consider two parts of the solid seperately: the part above the
xy-plane, and the part below. Since these regions are the same, the
total volume is twice the volume of the part above the xy-plane. For
the part above the xy-plane, the sphere meets the xy-plane with the
equation 22 + y? = 25. So, in the xy-plane, our region is bounded by
2> +y?> = 25 and 2?2 + y?> = 9. If we switch to polar co-ordinates,
these are the curves with » = 5 and r = 3. Re-arranging the equation
2% +y? + 22 = 25 gives 2 = /25 — 22 — y? = /25 — r2. Thus the total
volume is

2/02” /35(\/m)rdrd9
- 2/02” /357“(25—7’2)1/2 dr df
- 2/02”(—1/3(25 —2)2) 3 g
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= 256m/3

7. The region is given by the bounds 0 <z < a and 0 < a — z. To find
the centre of mass, we first need to the total mass. This is given by the
integral
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= k/oax2(a—x)+(a—a:)3/3da:
= k/oaaxz—x3+(a—x)3/3dx

= k(ar®/3 —2*/4 — (a — 2)*/12) 8
= k((a*/3—a*/4—0) — (0 —0—a*/12))
= ka'/6

To find the x co-ordinate of the centre of mass, we evaluate the integral
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This is a similar integral to above, it evaluates to ka®/15. Thus the x

co-ordinate is given by
ka®/15  2a

ka‘/6 5

Since the function and region is symmetric with regards to x and y,
the y co-ordinate is also given by

Thus the centre of mass is



